

XVII International Scientific Conference on Industrial Systems (IS'17)
Novi Sad, Serbia, October 4. – 6. 2017.

University of Novi Sad, Faculty of Technical Sciences,
Department for Industrial Engineering and Management

Available online at http://www.iim.ftn.uns.ac.rs/is17

 IS'17

From the Decomposition Algorithm to the Model Driven
Transformations in Database Design

Angelina Vujanović
 (Teaching assistant, University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi

Sad, Serbia, avujanovic@uns.ac.rs)

Slavica Kordić
 (Assistant professor, University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi

Sad, Serbia, slavica@uns.ac.rs)

Ivan Luković
 (Full professor, University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi Sad,

Serbia, ivan@uns.ac.rs)

Milan Čeliković
 (Teaching assistant, University of Novi Sad, Faculty of Technical Sciences Trg D. Obradovića 6, 21000 Novi Sad,

Serbia, milancel@uns.ac.rs)

Jovana Vidaković
 (Assistant professor, University of Novi Sad, Faculty of Sciences, Trg D. Obradovića 3, 21000 Novi Sad, Serbia,

jovana@uns.ac.rs)

Abstract

There are a lot of different approaches to information system (IS) development which are based on different
data models. Which data model will be chosen depends on the problem domain, the knowledge and also on
the personal preferences of an IS developer. In our previous research we have developed a tool that
provides an incremental approach to IS development which is based on the FT, the Extended Entity-
Relationship (EER) and the class data models, a Multi-Paradigm Information System Modeling Tool (MIST).
MIST provides transformations of the FT and the EER database models to the relational data model and also
transformations of the EER to the class data model. The goal of this paper is to use the decomposition
algorithm in a database design project and to apply it in the scope of the Model Driven Software
Development process. In this way it can be possible to overcome the problems of a database schema design
process based on the EER data model and transformations into the relational data model. Therefore, we
have decided to extend our tool functionalities in order to support the decomposition algorithm. Besides, its
purpose to overcome the problems that the EER approach introduces, the implemented decomposition
algorithm can be used in education as well.

Key words: Decomposition Algorithm. Model Driven Software Development. Relational Database Design.
Multi-Paradigm Information System Modeling Tool.

1. INTRODUCTION

During the last few decades, a number of approaches
to the information system (IS) development and design
has grown. With the emergence of a large and complex
IS that are interoperable in highly changeable
environment, the choice of the appropriate approach
becomes one of the key tasks in an IS development.
One of the broadly accepted approaches is a model-
driven approach. Model Driven System Engineering
(MDSE) and Model Driven Software Development
(MDSD) use the power of modelling to address a set of
systems development problems. The power of MDSD
and MDSE lies in the power of abstractions [1]. Models
in MDSD are the main building concepts that faithfully
reflect the reality, such as data structures in
programming. Model-driven approach increases the

importance of models and their power and allows the
developers to work at a higher level of abstraction,
using concepts and structures which are closer to the
end users.

In our previous research [2-5] we have developed a tool
that provides a model-driven approach to IS
development and evolution, the Multi-Paradigm
Information System Modeling Tool (MIST). The MIST is
a software tool aimed to provide an incremental
approach to IS development that is based on the form
type (FT) data model and the Extended Entity-
Relationship (EER) data model. The MIST provides
transformations of the FT and the EER database
models to the relational data model and also
transformations of the EER to the class data model
[6].The latest extension of the MIST is the EER2XML
component, which provides transformations of the EER

176

 Angelina Vujanović et al.

IS'17

database model to a generic XML schema specification
[7].

Besides the choice of appropriate approach in IS
development, the one also important task is a database
schema design. The further IS development heavily
depends on a correct database schema design-a badly
designed database schema can have seriously
consequences on the further development. In the last
decades, many data models and paradigms in a
database design have appeared. Some of them are
characterized as implementation data models (relational
data model), the other ones are characterized as
conceptual data models (Entity-Relationship (ER) data
model and its extensions (EER)). Conceptual data
models are mostly used in the database design process
to create conceptual database schema specifications.

The one typical scenario of a database schema design
process consists of the following steps: creating an
EER database schema, transforming it into the
relational database schema and its implementation
under different database management systems
(DBMSs). Despite that this scenario has many
advantages it also has some serious disadvantages.
The transformation process of an EER database
schema to relational database schema is based on
applying well-known mapping rules. The common belief
is that these rules will guarantee the satisfaction of the
third normal form condition (3NF) per se. However, a
reality is different and these mapping rules should be
taken only as advisable because transformation
process does not only depend on the formal mapping
rules, but also on the problem domain semantics. There
are many examples in which the same structure of EER
database schema should not be transformed into the
same relational database schema structure, due to the
different semantics assigned to the EER structure.

Besides the EER data model, the relational data model
has also a considerable popularity among the database
practitioners and researchers for its conceptual
simplicity and mathematical background. Many
principles, logical problems and their solutions that
concerning database design are defined at the level of
relational data model. Only some of these problems,
solutions and principles are exploited in database
design practices. One of the most important algorithms
for database schema design are normalization
algorithms-decomposition and synthesis algorithms.
The focus in this paper is on the decomposition
algorithm and its practical usage.

The goal of this paper is to use the decomposition
algorithm in database design projects and to apply it in
the scope of MDSD process. Using decomposition
algorithm it is possible to overcome the problems of
database schema design based on the EER data model
and its transformation into the relational data model. In
order to support the decomposition algorithm, we have
decided to extend the MIST functionalities with the
decomposition component. Our decomposition
component uses as an input a Universal Relation
Schema (URS) specification and produces a finite set of
relation schemes as an output.

Apart from Introduction and Conclusion, the rest of the
paper is organized as follows. Related work is
discussed in Section 2. A brief overview of the
decomposition algorithm is given in Section 3.
Transformations that are used in order to implement
decomposition algorithm and meta-models that are
used as input and output in transformation process are
presented in Section 4. A case study that illustrates a
usage of implemented decomposition algorithm is given
in Section 5.

2. RELATED WORK

This section gives a brief overview of the similar tools
and approaches to the IS development.

As it is already mentioned, we have developed a tool
that provides a model-driven approach to IS
development and evolution. MIST provides an IS
development that is based on the FT and the EER data
model, also transformations of the FT and the EER
database models to the relational data model,
transformations of the EER to the class data model and
the EER to the generic XML schema specification [2-7].
Because of the mentioned problems of a database
schema design based on the EER data model and its
transformation to the relational, we have extended
functionalities of our tool with the Synthesis component
[8]. The synthesis component implements the improved
synthesis algorithm, taking the FT model and
transforming it into the URS specification. The synthesis
algorithm then takes the URS specification and
produces a relational database model as an output. Till
now, approach based on the synthesis algorithm has
been successfully applied in many projects. As the
synthesis algorithm proved to be successful, we
decided to extend our tool with another normalization
algorithm [12], the decomposition algorithm. For the
purpose of this paper we implemented the original
decomposition algorithm.

Besides self-references that are given in this paper,
there are many other references presenting the results
of this research effort. With the increased use of
relational database, many automated tools are being
developed. In [13] authors have reported on a tool that
helps users to specify functional dependencies (fds).
There is also a Prolog-based system for normalization
through Boyce-Codd Normal Form (BCNF) [14], where
is also incorporated a new algorithm for projecting fds
on the sub relations. In [15] authors developed a
method that maps an EER schema into a relational
schema and normalizes it latter into inclusion normal
form (IN-NF). Unlike classical normalization, IN-NF
takes interrelational redundancies into account.

To the best of our knowledge, neither of previously
mentioned papers use the decomposition algorithm in
the scope of MDSD process as we do.

3. DECOMPOSITION ALGORITHM

The decomposition algorithm is a way of ensuring that a
database structure is suitable for general-purpose
querying and free of certain undesirable characteristics,

177

Angelina Vujanović et al.

 IS'17

such as insertion, update and deletion anomalies. The
decomposition algorithm represents a method of
systematic decoupling relation scheme into two smaller
relation schemes, starting with the URS which can be
assumed as a universal relation, containing: (i) a

universal set of attributes U and (ii) a set of functional

dependencies F defined over U. The algorithm will

repeatedly decompose schemes based on the
functional dependence (fd) till all relation schemes S =

{Ni(Ri, Ki) | i ∈ {1,..., n}}, where Ni is the scheme name,

Ri is the set of attributes of relational scheme and Ki is

the set of keys of a relation scheme Ni, are in a desired
normal form [10]. In this paper as desired normal form
we consider BCNF.

The algorithm guarantees: (a) preserving the input set
of attributes, (b) the lossless join condition over the
whole finite set of relational schemes, by embedding a
relation scheme into S whose key is a key of universal

relation scheme (U, F), if necessary. Preservation of

the input set F is not guaranteed, as some of the fds

can be lost in the decomposition process. If any fd is
lost during the decomposition process, after all relation
schemes are in the desired normal form, it is possible to
merge relation schemes with the equivalent keys. This
leads to the degradation of achieved normal forms, but
results in compensation of the lost fd.

The choice of fd (𝑌 → 𝐴 ∈ F) on which the decoupling of

relation scheme is based, is one of the most important
tasks in the decomposition algorithm. There are three
criteria (names of criteria are written in bolds) for
selecting the appropriate fd:

 the first one (C1) – introduces the conditions that

guarantee preservation of the input set F (the

third condition in (1)), but do not guarantee that all
relation schemes are in BCNF. The selected fd is
a non-trivial fd that is not a result of a key
dependencies (the first and second condition in
(1)).

 the second one (C2) – these conditions allow fd
to have a key on the left hand side but it is also
important that the union of the left and right hand
sides of that fd does not contain all attributes from

the set U (the second condition in (2)). The input

set F is also preserved (the third condition in (2)).

 the third one (C3) – introduces a requirement of
selecting non-trivial fd that is not result of key
dependencies (both conditions in (3)). This
requirement guarantees that all relation schemes
are in BCNF.

After finding the appropriate fd (𝑌 → 𝐴), relation
scheme is decoupled as follows: one scheme contains
all attributes without ones on the right side of the

selected fd and the set of fds F defined over that set of

attributes ((R1, F1) = ((U\A)Y, F|(U\A)Y) and the another

scheme contains union of attributes from the left and

right side of the selected fd and the set of fds F defined

over that set of attributes ((R2, F2) = (YA, F|YA).

In the next section we present implementation of the
previously described decomposition algorithm.

4. DECOMPOSITION COMPONENT OF THE
MIST

In order to support the decomposition algorithm, we
have extended the MIST functionalities with the
decomposition component. In this section we present
part of our decomposition component that is
responsible for transforming the URS into a finite set of
relation schemes. The decomposition component of the
MIST provides model-to-model (M2M) transformations
(written in bolds):

 the first one (T1) – covers the basic
decomposition algorithm, without merging
relational schemes with the equivalent keys and

 the second one (T2) – responsible for merging
relational schemes with the equivalent keys, if it is
necessary.

The model that is transformed in T1 conforms to the
meta-model of the URS which is transformed into the
model of a finite set of relation schemes. The model
that is transformed in T2 is the output from T1, or to be
more precise, the model of a finite set of relation
schemes. The same model is also output from T2, but
with the merged relational schemes.

The meta-model is presented in the following
subsection. The output of the decomposition
component, a finite set of relation schemes, may be
further used in the process of code generation.

4.1 META-MODEL

In this subsection, we present a meta-model of the URS
in more details. The components of our meta-model are
given in Fig. 1. In the rest of this subsection we
describe each of the components with the
corresponding meta-model class (written in italics).

In order to create a meta-model it is necessary to
perceive the concepts specific to a particular domain
[9]. As it is already mentioned, the decomposition
algorithm is based on the URS and by the equivalent

transformations of F the algorithm produces a finite set

of relation schemes S. For purpose of creating meta-
model to which the input/output model of transformation
process conforms, the following concepts are
necessary: attributes, keys, relation schemes and fds.
Based on these concepts we have created our meta-
model. In this paper we present only parts of the URS
meta-model which are important for the decomposition
method, the rest can be found in [8].

The set of relation schemes (SetOfRelationSchemes) is
the root element of our meta-model. Each root element
has at least one or more relation schemes that are
modelled by the RelationScheme class. The class

𝑌 → 𝐴 so as 𝐴 ⊈ 𝑌∧ U ⊈ 𝑌+∧ (F+ = (F|𝑌(U\𝐴) ∪F|𝑌𝐴)+ (1)

𝑌 → 𝐴 so as 𝐴 ⊈ 𝑌∧ 𝐴𝑌 ⊂ U ∧ (F+ = (F|𝑌(U\𝐴) ∪ F|𝑌𝐴)+ (2)

𝑌 → 𝐴 so as (𝐴 ⊈ 𝑌) ∧ U ⊈ 𝑌+ (3)

178

 Angelina Vujanović et al.

IS'17

RelationScheme contains only name as attribute. Each
relation scheme has one or more attributes that are
modelled by the Attribute class, zero or more functional
dependencies modelled by the FDependencies class
and zero or more keys modelled by the Key class. Each
attribute has a unique name (universal relation
assumption). For that purpose restriction that two
attributes with the same name cannot be entered is
implemented. Each key comprises one or more
attributes of the relation scheme. A functional
dependence has one left side and one right side, which
are modelled by the LeftSide and the RightSide class,
respectively. Each left and right side of fd has zero or
more attributes. There is also a restriction that the left or
the right side of fd cannot contain attributes that are not
in the set of attributes of that relation scheme. The class
ClosureOfFD is created for the purpose of
transformation algorithm and comprises zero or more
fds.

Figure 1. The meta-model of a URS

4.2 ATL TRANSFORMATIONS

The transformations as an input and output use a model
that conforms to the meta-model mentioned in the
previous subsection. The transformations are specified
in the Atlas transformation language (ATL) [11]. In this
paper we present steps of the decomposition algorithm
without the ATL implementation details.

As it is said in the introduction part of this section, T1 is
used for the decomposition algorithm (without merging
relational schemes) and T2 for merging relational
schemes after decomposition, if it is necessary. Before
the implementation of the decomposition algorithm it is
necessary to find the candidate keys for the URS.
Therefore we have implemented the algorithm for
finding candidate keys [12]. It is also important to
implement the algorithm for attributes closure and fds
closure [12], which will be used in further steps of the
decomposition algorithm. After implementation of the

previous algorithms, the next step of our transformation

process is finding an appropriate fd from the F on which

the decoupling of relation schemes will be based.

First, we try to find that fd using C1. In this step of

transformation we are passing through the F and for

every fd check whether it satisfies C1. The algorithms
for checking the appropriate criteria satisfying are
implemented based on the (1), (2) and (3) given in the
previous section. For that purpose we used the
previous implemented algorithms for finding keys,
attributes closure and fds closure. We used the first fd
that satisfies C1 to decouple the URS as it is described
in the previous section. In this process we assign an
unique name (N1, N2,..., Nn) to every relation scheme. If
there is no fd that satisfies C1 then we try to find a fd
that satisfies C2. The method of finding appropriate fd is
similar to the previous one. If there is no fd that satisfies
C2 then we try to find a fd that satisfies C3.

After we finish with decoupling and every scheme is in

BCNF we check if the input F is preserved. If it is not,

we merge relation schemes with the equivalent keys.

5. CASE STUDY

In this section we introduce a small case study in order
to illustrate concepts, data models and transformations
described in previous sections. The idea is to enter
URS syntax correctly written as input, as it is shown on
the left side of the Fig. 2 and to get a finite set of
merged relational schemes at the output, as it is shown
on the right side of the Fig. 5.

As URS in this case study we use:

The input in T1 is model that conforms to the meta-
model of URS, as it is shown on the left side of the Fig.
2 and output is a finite set of unmerged relational
schemes, as it is shown on the right side of the Fig. 2.

Figure 2. The source and target models of T1

U = {a, c, e, g}, F = {e → c, ac → g, ac → e}

179

Angelina Vujanović et al.

IS'17

The first step in our transformation process is to find
candidate keys for the relational scheme. For that
purpose we implemented algorithm for finding

candidate keys [12], so based on the input sets U and

F we found following candidates for the URS:

After finding the candidate keys, the next step is to
check if the starting relational scheme is in the BCNF. If

it is not, then we examine all fds from the F to find

appropriate one for the decomposition. Based on the
previously mentioned three criteria, we find that neither

one of the fds from the set F satisfies C1. So we

continue with examination of the set F and find that fd

ac → g satisfies C2. We use it to decouple the URS.
The process of decoupling based on the selected fd is
given in Fig. 3.

Figure 3. Decomposition based on the fd ac->g

After decoupling, we have relational scheme N1 ({a, c,
g}, {ac → g}) which is in the BCNF (there is also
checking in which normal form is specific relational
scheme) and the following one

which is not in the BCNF. In the further steps, we
examine only the relational scheme which is not in the
BCNF. Based on the three criteria, we find that neither

one of the fds in the set F1 satisfies C1 nor C2. So we

continue with examination of C3 and find that fd e→ c
satisfies it. We use it for decoupling. Fig. 4 shows the
decomposition of the relational scheme based on the
selected fd.

Figure 4. Decomposition based on the fd e->c

Now, we have set of relational schemes:

 N1({a, c, g}, {ac → g}) K1={ac},
 N2({e, c}, {e → c}) K2={e} and
 N3({a, e}, {}) K3={ae}

which all are in the BCNF. This set of relational
schemes represents the result of the T1.

After we finish with decoupling and every scheme is in

the BCNF, in T2 we check if the input set F is

preserved. The input model in T2 is the output model
from T1, a set of unmerged relational schemes. In this

case study the set F is not preserved, so we merge

relational schemes with the equivalent keys (N1 and N3).

Finally, we have set of relational schemes:

 N1({e, c}, {e → c}) K1={e},
 N2({a, c, e, g}, {ac → g, ac → e}) K2={ac, ae}

where N1 is in the BCNF and N2 is in the 3NF. This set
represents the result of T2. On the left side of the Fig. 5
the output from the previous transformation T1 is
shown, which is also an input in T2. On the right side
there is the result of T2, a finite set of relational
schemes.

Figure 5. The source and target models of T2

6. CONCLUSION

During our previous researches we have developed a
tool that provides a model-driven approach to IS
development and evolution, named MIST. The MIST is
a software tool aimed to provide an IS development that
is based on the FT data model and the EER data model
and also provides transformations of the FT and the
EER database models to the relational data model, the
transformations of the EER to the class data model and
the EER to the XML schema specification.

In this paper, we present an alternative approach to the
database schema design process that is not based on a
typical scenario of creating an EER database schema
and then its transformation into the relational database

U1= {a, c, e}, F1= {e → c, ac → e}

K = {ae, ac}

180

 Angelina Vujanović et al.

IS'17

schema. Instead of that, our approach uses a
decomposition algorithm, as well as many other
algorithms created for that purpose. In order to support
decomposition algorithm in our tool, we have extended
functionalities of the MIST by developing a
decomposition component. The decomposition
component uses the URS specification as an input and
produces a finite set of relation schemes as an output.
One of the advantages of our approach is that it
overcomes some problems that may arise in the
process of transforming the EER database schema into
the relational database schema because transformation
process does not only depend on the formal mapping
rules, but also on the problem domain semantics. There
are many examples in which the same structure of the
EER database schema should not be transformed into
the same relational database schema structure, due to
the different semantics assigned to the EER structure.
In such cases, the quality of designed database
schemas is dependant of designer’s theoretical
knowledge and previous experience.

Till now, we have successfully applied the tool and
approach in many projects. We also use it for
educational purposes in the course of domain specific
languages and model driven software development.

Further development considers the use of our tool and
approach in a large scale IS projects. One future
development of our decomposition component can be
implementation of checking the preservation of the
lossless connectivity. The checking consists of the
determining the key of the URS and verifying whether
the final set of relation schemes includes a relation
scheme with the key of URS. One improvement can
also be a support for the set of constraints, such as
referential and inverse referential integrity, not null and
check constraints.

7. ACKNOWLEDGMENT

The research presented in this paper was supported by
Ministry of Education, Science and Technological
Development of Republic of Serbia, GrantIII-44010.

8. REFERENCES

[1] Nolan, B., Brown B., Balmell L., Bohn T. and Wahli, U. (2008),
Model Driven Systems Development with Rational Products,
IBM Redbooks.

[2] Luković, I., Mogin, P., Pavičević, J. and Ristić, S. (2007), “An
approach to developing complex database schemas using form
types”, Software: Practice and Experience 37 (15), pp. 1621–
1656.

[3] Aleksić, S., Luković, I., Mogin, P. and Govedarica, M. (2007), “A
generator of SQL schema specifications”, Computer Science
and Information Systems, Vol. 4,Issue 2, pg. 81–100.

[4] Luković, I., Popović, A., Mostić, J. and Ristić, S. (2010),“A tool
for modeling form type check constraints and complex
functionalities of business applications”, Computer Science and
Information Systems, Vol. 7, Issue 2, pg. 359–385.

[5] Luković, I., Ristić, S., Mogin, P. and Pavičević, J. (2006),
“Database schema integration process–a methodology and
aspects of its applying", Journal of Mathematics, Vol. 36, Issue
1, pg. 115–140.

[6] Dimitrieski, V., Čeliković, M., Aleksić, S., Ristić, S., Alargt, A.
and Luković, I. (2015), “Concepts and Evaluation of the
Extended Entity-Relationship Approach to Database Design in
a Multi-Paradigm Information System Modeling Tool”, Computer
Languages, Systems and Structures, Vol. 44, pg 299-318.

[7] Poznanović, M., Kordić, S., Vidaković, J., Ristić, S. and
Čeliković, M. (2017), “An Approach to Generating Specifications
of a Database Schema for DBMSs based on XML Data Model”.
In: Zdravković, M., Konjović, Z., Trajanović, M. (Eds.) ICIST
2017 Proceedings Vol. 1, pp.195-200.

[8] Luković, I. (2009), “From the synthesis algorithm to the model
driven transformations in database design“. In: Proceedings of
10th International Scientific Conference on Informatics, Herlany,
Slovakia, pp. 978-988.

[9] Brambilla, M., Cabor, J. and Wimmer, M. (2012) Model-Driven
Sofware Engineering in Practice, Morgan & Claypool
Publishers.

[10] Mogin, P., Luković, I. and Govedarica M. (2004), The Principles
of Database Design, University of Novi Sad, Faculty of
Technical Sciences.

[11] ATL [Online]. Available at: https://eclipse.org/atl/
[12] Mogin, P. and Luković, I. (1996), The Database Principles,

University of Novi Sad, Faculty of Technical Sciences.
[13] Hasan, W. and Andyork, B.W. (1985), "A database design

tool", AITG Tech. Rep. 003, Digital Equipment, Corp,. Hudson,
Mass.

[14] Ceri, S. and Gottlob, G. (1986), "Normalization of relations and
Prolog", Commun. ACM, pg. 524-545.

[15] Kolp, M. and Zimanyi, E. (1998), "Prolog-Based Algorithms for
Database Desing", Proceedings of the 6th International
Conference on Practical Applications of Prolog, PAP'98,
London, UK.

181

http://www.eventiotic.com/eventiotic/library/paper/300
http://www.eventiotic.com/eventiotic/library/paper/300

