

XVII International Scientific Conference on Industrial Systems (IS'17)

Novi Sad, Serbia, October 4. – 6. 2017.
University of Novi Sad, Faculty of Technical Sciences,

Department for Industrial Engineering and Management
Available online at http://www.iim.ftn.uns.ac.rs/is17

IS'17

Do the microservices improve the agility of software development teams?

Branislav Mišić

(University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia,

bane.misic@outlook.com)

Milana Novković

(University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia,
mnovkovic@uns.ac.rs)

Robert Ramač

(University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia,
ramac.robert@uns.ac.rs)

Vladimir Mandić
(University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia,

vladman@uns.ac.rs)

Abstract

Nowadays, agile approaches are becoming the mainstream paradigm for organizing the software
development teams. However, in practice, some aspects of the agility of software development, e.g.
the speed of development, scalability, reusability, and modularity are constrained or diminished due to
the software product design itself or because of the inappropriate use of technologies. The recent
advancement in the service-oriented architectures and cloud technologies resulted with a concept of
microservices. Microservices are small independently releasable, upgradable and replaceable
services that work together around a business domain. They support agile development principles and
core aspects stated above. In this paper, we review the available literature for microservices and point
out their benefits. The literature findings are used for designing a questionnaire for gathering
information from an industrial project that utilizes the concept of the microservices. Overall results
confirm microservice effectiveness on a variety of system elements and factors stated in literature.
Therefore conclusion about question do the microservices improve the agility of software development
teams could be simple yes. But on the other hand, there are quite a few statements to consider
described in this paper if we want to answer how and to what extent do microservices improve the
software development agility.

Key words: microservices, microservice architecture, microservices in practice, agile microservices

1. INTRODUCTION

In todays dynamic environment where the market is
global and competition tends to evolve and adapt fast in
order to stay on top, internet corporations have to be
able to changes and introduce new features fast, which
can be a real challange. The business organization
needs to be able to respond to changes quickly, bring
agility to its IT systems and infrastructure and at the
same time maintain business stability. For a long time
Service Oriented Architecture (SOA) was the best
answer to organize huge applications around services

and logically separate business domains. New
technology and market changes force large companies
to be more agile [8]. SOA as a forerunner of
microservices represents a loosely-coupled architecture
designed to meet the business needs of the
organization [9]. Managing changes in case of large
applications can be time-consuming, difficult to
coordinate and control. Over time the main drawback of
this architecture becomes visible. As more features are
changed or added to the system, every feature has to
be tested through the whole system to ensure
compatibility. SOA system structure can be identified as

170

Mišić et al.

IS'17

a monolithic structure [9].

Monolithic architecture represents the architecture that
consists of coarse-grained services and components
that depend on each other. Monolithic deployment of a
system represents a single point of failure, if the
application fails for some reason, the whole set of
services fails too [9]. Often used Enterprise Service Bus
(ESB) based on application server, becomes the
bottleneck that often generates high latencies providing
a single point of failure [7]. Monolithic approach is good
for small scale teams and projects. Meanwhile, in
conditions where is important to achieve business
competitiveness and enable scalability, flexibility and
other requirements like fast development, short time to
market and large team collaboration monolithic
architecture starts being a huge barrier. The solution to
overcoming that barrier was introduced as microservice
architectural approach [10].

This paper tries to provide an answer to that question
using qualitative research techniques on a real project.
Using information gathered from extensive interviews
with project team members, the research team was
able to provide insight on the main question of this
paper mentioned in the title.

The paper structure consists of the introduction to the
main concerns of the paper in Section 1. Related work
in Section 2 is filled with theory insight about
microservices and software development agility. The
methodology used for the research was detailed in
Section 3. Results in Section 4, provide the detailed
synthesis of information gathered by research interview.
Section 5 consists of conclusion and discussion of the
results from Section 4 regarding provided thesis in
Section 2.

2. RELATED WORK

Microservices are defined to be contrasted to monolithic
structure. Microservice architecture is an architecture
based on several principles where related functionalities
are combined and implemented as a single business
capability represented as a microservice [3] [4]. This
architecture represents an approach to developing
applications by using independent services each
running in its own process [5]. Microservices are small
and focused and each microservice is built with its own
source code, repository and delivery pipeline [12].
Microservices are defined as cohesive, independent
processes interacting via messages, which represent
modules of distributed application [4]. In terms of
advantages, microservices make the system more
efficient and highly available through the realization of
each business capability, it’s functionalities and related
data as an independent service [3]. Loosely coupled
services as the main trait of microservices enable
independent, more frequent and rapid deployments that
lead to faster development of new features and change
of the existing ones [3,4,12]. Additionally, microservice

architecture embraces high cohesion between this
small operationally independent services [3,4]. Other
advantages lie in their independence from other parts of
the system so they can be deployed independently and
therefore monitored and scaled separately [3,5]. Due to
their way of packaging to containers, microservices are
easy to relocate and replicate across heterogeneous
platforms. Their ability to spread across geographic
distances and data centers makes them highly available
[3,4]. Microservices enable and support the
implementation of ability to dynamically scale service
instances according to the load there for enabling them
to be elastic and have more fault tolerance in
comparison to monolithic architecture. If one
microservice fails others are not affected due to their
isolation. Ability to be tested separately from the rest of
the system enables isolation of the parts of the system
that were changed or affected by the change [3].
Incorporating microservices into modern day application
development can lead to additional benefits by the clear
separation of concerns, loose coupling, and higher
potential to adapt to changes thus leading to increased
agility [6].

As agile software development is opposite of
documentation-driven software development. Modern
organizations are trying to bring agility to their IT
systems by incorporating microservices. As a new
software development style, agile development is
focused on the talents and skills of individuals,
modeling the process to specific people and teams [1].
Agile development theory is based on the agile
manifesto, which was written by the practitioners who
proposed many of the development methods. The
manifesto states that agile development should focus
on four core values: Individuals and interactions over
processes and tools, working software over
comprehensive documentation, customer collaboration
over contract negotiation and responding to change
over following a plan [2]. Agile software architecture
could be described as a system that is built using a
collection of small, loosely coupled components and/or
services that unite together to satisfy the final end-goal.
This architecture would style provide agility in many
ways. Components could be created, modified, tested,
replaced and easily maintained in isolation. This
described model theoretically refers to microservices
[13].

This new style of development also brings advantages
as the contribution to the reduction of costs of moving
information between people and reduction of time
consumption in the process from the point of decision
making to seeing the result of that decision [1]. In order
to improve the ability to respond to changes
organizations incline to make teams of people agiler
through enforcing people factor in the software
development process. In that process, organizations try
to respect agile software development principles stated
in [2].

171

Mišić et al.

IS'17

Since microservices are modeled around specific
business domain and are language neutral,
development teams have the freedom to decide which
programming languages to use regarding optimal
technology for given tasks and team skills. If boundaries
between business domains are well defined,
microservices can be designed and sized efficiently,
made in a way that they enable failure isolation.
Microservices made this way enable developer with the
right tooling to find out exactly which part of code
caused the error since the code is decided properly
according to specific business domain or functionality.
Observability is also a very important aspect of every
microservice based system. Tools that provide visual
status of services enable quick response and provide
the location of any problem, thus enabling the team to
know the current state of every part of the system [12].
Furthermore, microservices allow companies to
manage large applications using a methodology where
incremental improvements are carried out by smaller
teams on independent codebase and deployments.
That considered, microservices bring some challenges
of distributed systems and team development
management practices that must be taken seriously
[11]. Removing the overhead and risk of large-scale
software development by using frequent iterations and
smaller work increments, and prototyping as means of
collaboration with users is one of the main principles of
the Agile approach. Since the manifesto publication, the
adoption of agile software development grew constantly
as it provides just what the companies needed to
deliver software fast and be more competitive on the
market [13].

Brown in [14] claims that agile software development,
continuous delivery, DevOps culture and microservices
are all connected by a common set of goals. That is to
be responsive as much as possible to customer needs
while maintaining highest possible levels of software
quality and system stability. Even if these architectural
phases were developed in a specific order from the
industry perspective, there’s no right sequence for an
individual company to follow.

As McLarty said [13] "Microservices are the
architectural phase of the agile progression." In
practice, microservices downsides were not related to
architectural pattern and implementation practices.
Many companies struggle to apply microservice
architecture pattern which requires time and experience
for best results. Teams have to get reformed and
change their habits in a way that benefits the new
project and organization structure by Jan Stenberg [15].
Conway's law also called the mirroring hypothesis is
acknowledged by reforming organization and team
structure and, predicts that a development organization
will inevitably design systems that mirror its
organizational communication structure [16]. In his
article, Jan Stenberg [15] describes five major factors of
possible downsides and points of failure while using

microservices which are not related to the architecture
itself, but human factor, team and organizational project
management in a potential agile environment and those
factors are: Disagreement between developers, lack of
developer experience, service boundaries causing
barriers, code replication and service granularity
planning. Table 1 consists of the theses from sources
mentioned in this section. The theses represent base
which is used to compare research results and they are
covered in further sections.

Table 1. Main statements and benefits from the literature.

Thesis Mark

In terms of advantages, microservices make the system
more efficient and highly available through the realization of
each business capability, it’s functionalities and related data
as an independent service [3].

B1

Loosely coupled services as the main trait of microservices,
they enable independent, more frequent and rapid
deployments that lead to faster development of new
features and change of the existing ones [3,4,12].

B2

Other advantages lie in their independence from other parts
of the system so they can be deployed independently and
therefore monitored and scaled separately [3,5].

B3

Due to their way of packaging to containers, microservices
are easy to relocate and replicate across heterogeneous
platforms. Their ability to spread across geographic
distances and data centers makes them highly available
[3,4].

B4

Microservices dynamically scale according to the load there
for enabling them to be elastic and have more fault
tolerance in comparison to monolithic architecture [3].

B5

Ability to be tested separately from the rest of the system
enables isolation of the parts of the system that were
changed or affected by the change [3].

B6

Incorporating microservices into modern day application
development can lead to additional benefits by the clear
separation of concerns, loose coupling, and higher potential
to adapt to changes thus leading to increased agility [6].

T1

The manifesto states that agile development should focus
on four core values: Individuals and interactions over
processes and tools, working software over comprehensive
documentation, customer collaboration over contract
negotiation and responding to change over following a plan
[2].

T2

Furthermore, microservices allow companies to manage
large applications using a methodology where incremental
improvements are carried out by smaller teams on
independent codebase and deployments [1,11].

T3

Jan Stenberg describes factors of possible downsides and
points of failure while using microservices which are not
related to the architecture itself, but human factor, team and
organizational project management: Disagreement between
developers and lack of developer experience [15].

T4

3. METHODOLOGY

To answer the main question of this paper, the team

172

Mišić et al.

IS'17

decided to use qualitative research method. This
method provides richer and more informative results by
forcing the researcher to get into the core of the
problem. It’s based on answering the “why” question
and helps with the questions that involve variables that
are not easy to quantify. This method is described as
less proof-oriented in comparison to quantitative, and is
also more difficult to bring out the conclusion and
summarize the results. The qualitative method, in this
case, considers using hypotheses gathered in the
literature review and carefully designing a semi-
structured interview [17,18]. Semi-structured interviews
represent a mixture of open-ended and specific
questions, designed to not only get the information that
is foreseen, but also unexpected types of information.

The interview consists of several groups of questions.
Each group represents single hypotheses that will be
covered from different points of view with multiple
questions. The interview provided the collection of
answers and information which is processed and
summarized in three important concerns in Section 4.
Those three concerns provide a deeper understanding
of microservice architecture and agile development
connections and how they affect each other on this
particular industry project. One concerning
microservices benefits, theory expectations and how
they work in reality compared to other monolith
structured architectures. Second concern describes
microservices in terms of agile development, and tries
to provide answers about the connection of agile
development theory and microservices in practice. Third
concern tries to describe how teamwork communication
and human factor affects developing microservices and
overall development agility.

Before the main questions in interview, demographic
information was gathered in form of subject team role
and years of experience in mentioned role. The main
part of the interview covered 6 microservice benefits
and 5 theses with a total of 17 questions. Interview
provided information and overview, of how microservice
architecture impacts a real project in terms of agility and
inspect claims on this architecture benefits. Whole
interview process per person was predicted to last a
maximum of 45 minutes and it was recorded with the
consent of the examinee.

4. RESULTS

The idea to use microservice architecture to make
reusable service platform at TIAC d.o.o. emerged as
the companies first microservice based project. The
project was named Reqster. This platform represents
end product, based on a set of unified reusable
microservices that clients can use for their application
needs without the need to build services from scratch.
After setup phase was done and system running close
to its full potential, with first clients, the project was a
perfect candidate for this research. Each developer on
the project was interviewed. There was a total of 5

interviewees, who intensively work on the project with
various roles.

Table 2. Interview subjects by their role and experience

Subject no. Position Exp. (years)

S1 P1 (Project owner) 15

S2 P2 (System architect) 8

S3 P3 (Software developer) 2.5

S4 P3 (Software developer) 4

S5 P4 (User/Mobile developer) 3

Each project team role contributed to the understanding
stated thesis about microservices and their agility they
provide from a different perspective. At the start of the
discussion, project roles are described with details and
parts of the interview answers they contributed the
most. Product owner role (S1) gave us more
information about the idea of project and collaboration
with clients. Interviewee (S1) provided concise, brief
answers and valuable insight about how starting new
microservice based project versus shaping existing
monolith into one can be different. System architect and
team lead role (S2) provided very detailed information
about setting up the project and separating concerns.
Some drawbacks and benefits were described with
many details as discussed below. Leading the team,
communication flow, and experience within team
answers were also described. Software developers
(S3,S4) focused more on details about the separation of
concerns, testing, and overall communication as the
important issues. Also, front-end developer (S4) gave a
more detailed insight of how data manipulation on the
client side is affected with microservices. As Reqster
platform has to be connected to end user application by
the development team or end user, client role emerged.
Client role, mobile application developer (S5) provided
mostly opinionated answers with hands on experience
about how powerful and user-friendly it was, to use the
microservice based platform to provide services for end
clients and their applications. In what follows is a given
summary of information gathered about the three main
concernes mantioned in Section 3.

The first concern is specified using aggregated answers
of seven questions described in further text.
Independence and loose coupling, make the system
easier to build. Microservices provide flexibility to deal
with complicated tasks using a combination of many
smaller services and components. In comparison to
monolithic, microservices manage to work with only one
working service, while others are in development and
can still be productive. They scale easier than
monolithic, easier to setup on more separate machines,
they provide using different technologies and
independence in a development of each individual or
team. Deployment of monolithic application requires

173

Mišić et al.

IS'17

much more work. Microservices are more stable than
monolithic structured architectures because
components and parts of system don't rely on each
other that much, or at all as stated by all interviewees.
The system is much more resistant to errors, but on the
other hand stated by (S5), for example, one user can
make orders for another user in the current Reqster
application. There is no much control over calls. Some
nonexistant information can be called, all that has to be
managed on the client side, stated (S5) from a client
perspective. Monolith applications use less resources
and often get everything they need in a single call was
opinion of (S4) as front-end developer. In the case of
microservices where the request has to travel through
the whole application to serve some complicated
request, multiple service calls have to happen to
complete single data set. Microservices use way less
resources if simple calls are needed. Eventually all
depends on system size. Microservices are somewhat
more iterative because smaller components are easier
to manage. Changes don't lead to much or any
changes to the rest of the system. On the other side if
microservices require change on one or two services,
they act faster than other architectures, but in the case
of changes on the whole set of services, monolithic are
considered to be easier. On front-end side,
microservices could be a little bit complicated to use
stated by (S4), because they require more separate
calls in order to complete one specific task. Separate
calls lead to many asynchronous calls, which may lead
to writing more code and slower response time. Initially,
microservices based system is harder to setup, but later
when the system gets mature, it's much easier to
maintain and acts faster to changes than monolithic
systems. It depends on how fast can it reach full
operability, due to the complexity of the system.
Opinionated answers conclude that scaling
microservice based system would be much easier due
to the ability to spin more microservices that need
scaling on more machines or containers, at any
location. Testing is equally important at microservices
as on other architectures, but in the case where clients
can have more versions of the same service, testing
becomes very important. Each microservice represent
smaller code base and overall fewer functionalities,
which leads to covering cases easier with tests. Also
testing microservices requires more planning ahead
and being cautious while testing cross component
communications. Tests can be often reused and easily
multiplied. Testing can be more complicated in bigger
systems but overall it is easier for medium and smaller
applications when compared to monolith structured
applications, as (S2) had different opinion. Monitoring is
also very important for microservices in comparison
with other architectures, because the system can
function even if some microservice doesn't. Being able
to detect which one, how and why it stopped working
makes microservice system considerably easy to
maintain. Setup can easily go wrong because a lot of

decisions must be made in terms to make separation of
concerns.

In the second concern, microservices were investigated
in terms of compatibility with agile development theory
and agile manifesto. Most answers were opinionated
regarding the experience on the project. Teamwork
benefits are more visible at microservice architecture
because of cleaner separation inside the team. When
the system is fully operational, it's easier to organize
work of one microservice team. Microservices support
claim that individuals and their interaction are more
important than processes and tools. They support
different technologies for every single microservice to
be used. On the other side sole mentioned only by the
(S2), there are some conventions and rules when
comes to developing microservices, but overall they
support teamwork more than other architectures
because of their flexibility. Documentation importance is
more in focus when it comes to microservice
architecture. It’s equally important to have software that
works, and development in focus same as detailed
documentation about service APIs. Documentation of
business logic is usually less extensive, and less in
focus, while API description and how it works is greatly
more detailed, updated and used in development. In the
case of Reqster project, the team is more prone to
having close collaboration with clients than having
extensive contracts. They require some basic contract
to be made at the beginning, but constant collaboration
is often required during development and later in the
maintenance of the system, opinionated by the
development team (S2,S3,S4) and confirmed by
product owner (S1). Microservices made easy
responding to often changes over following a strict plan
that’s hard to change, which is the main trait of the agile
development as stated by all examinees.

Human factor while developing microservice based
applications is described as the third concern that
interview answers covered. In terms of time put in
discussions and meetings, microservices require about
the same time as classic, monolith structured
architectures. Depending on team role, inexperienced
team members need less effort to start working with
microservices than with other monolith structured
architectures stated by development team (S2,S3,S4).
Basic theory, rules, and conventions about
microservices are required to be able to understand and
work with them, and they are well documented and
available on the internet. Separated concerns make
new team members quickly familiar with their tasks and
overall system. Discussions while developing
microservice based application take place often, but
shorter in length and usually have less importance. In
terms of quantity, they take the same amount of time
than any other architecture. Having frequent
discussions between team members and other teams
prevents some major misunderstanding and problems
to occur as (S3,S5) stated.

174

Mišić et al.

IS'17

5. CONCLUSION AND DISCUSSION

On global informational technology market,
microservices gain more on popularity by the day.
Having fast, reliable, and overall agile system that is
able to respond to changes in no time, certainly became
a priority. Yet implementing microservice architecture
can become a challenge in many ways, so the real
benefits and overall agility of using microservices in
practice become questionable. Information gathered on
microservice benefits and comparison with other
architectures, confirm stated thesis (B1,B2,B3) in table
1 Section 2. As all the examinees state that
Independence and loose coupling, make the system
easier to build, they also state that microservices
provide flexibility to deal with complicated tasks.
Monitoring and log tracking were also stated as very
important for microservices in comparison with other
architectures because it represents the only and true
way of tracking the overall system state. On theses
(B4,B5) opinionated answers state that microservices
scale easier than monolithic, and are easier to setup on
more separate machines. Scaling microservice based
system would be much easier due to the ability to spin
more microservices that need scaling on more
machines or containers, at any location. Thesis (B6) is
partially proven and is covered by states that testing
cross component services require more ahead planing
and can be more complicated in bigger systems. Also,
test can be often reused and easily multiplied. Testing
logically smaller components is a lot easier than on
other architectures. On (T1, T3) results state that if
microservices require change on one or two services,
they act faster than other architectures, but in the case
of changes on the whole set of services, monolithic are
considered to be easier. Also, results state that
microservice based system is much easier to maintain
and acts faster to changes than monolithic systems. In
thesis (T2) agile manifesto was aligned with
microservices in three out of four statements, strongly.
Only the statement “working software over
comprehensive documentation” was not completely
supported by states that It’s equally important to have
software that works, and development in focus same as
detailed documentation about service APIs. Also,
results state that documentation of business logic is
usually less extensive, and less in focus, while API
description and how it works is greatly more detailed,
updated and used in development. About human factor
theses (T3,T4) results state that in terms of time put in
discussions and meetings microservices require about
the same time as any other architecture. Inexperienced
team members need less effort to start working with
microservices than with other architectures because
separated concerns make new team members quickly
familiar with their tasks and overall system. Discussions
take place more often, but shorter in length and usually
have less relevance. Results also state that having
frequent discussions between team members prevents
misunderstanding and communication-related problems

to occur.

Overall results confirm microservice effectiveness on a
variety of system elements and factors stated by the
thesis. Therefore conclusion about question do the
microservices improve the agility of software
development teams could be simple yes. But on the
other hand, there are quite a few statements to consider
described in this paper if we want to answer how and to
what extent do microservices improve the software
development agility.

6. REFERENCES

[1] Cockburn, Alistair, and Jim Highsmith. (2001): 131-133.
[2] "Agile software development, the people factor." Computer

34.11 Fowler, Martin, and Jim Highsmith. "The agile manifesto."
Software Development 9.8 (2001): 28-35.

[3] Dragoni, Nicola, et al. (2017) "Microservices: How to make your
application scale." arXiv preprint arXiv:1702.07149

[4] Dragoni, Nicola, et al. (2016) "Microservices: yesterday, today,
and tomorrow." arXiv preprint arXiv:1606.04036

[5] Namiot, Dmitry, and Manfred Sneps-Sneppe. (2014) "On micro-
services architecture." International Journal of Open Information
Technologies 2.9.

[6] Di Francesco, Paolo, Ivano Malavolta, and Patricia Lago. 2017
"Research on Architecting Microservices:Trends, Focus, and
Potential for Industrial Adoption." Software Architecture (ICSA),
2017 IEEE International Conference on . IEEE, 2017.

[7] Mahmood, Zaigham. (2007): 74-78. "The promise and limitations
of service oriented architecture." International journal of
Computers 1.3

[8] Yu, Yale, Haydn Silveira, and Max Sundaram. 2016. "A
microservice based reference architecture model in the context
of enterprise architecture." Advanced Information Management,
Communicates, Electronic and Automation Control Conference
(IMCEC), 2016 IEEE . IEEE, 2016.

[9] Fowler, Martin, and James Lewis. (2014) "Microservices."
ThoughtWorks. http://martinfowler.com/articles/microservices.
html [last accessed on June 21, 2017].

[10] Jaramillo, David, Duy V. Nguyen, and Robert Smart. 2016
"Leveraging microservices architecture by using Docker
technology." SoutheastCon, 2016 . IEEE.

[11] Villamizar, Mario, et al. 2015 "Evaluating the monolithic and the
microservice architecture pattern to deploy web applications in
the cloud." Computing Colombian Conference (10CCC), 2015
10th . IEEE.

[12] Jaramillo, David, Duy V. Nguyen, and Robert Smart. 2016
"Leveraging microservices architecture by using Docker
technology." SoutheastCon, 2016 . IEEE.

[13] Matt McLarty, (2016). “Microservice architecture is agile software
architecture“
http://www.infoworld.com/article/3075880/application-
development/microservice-architecture-is-agilen software-
architecture.html [last accessed on June 22, 2017].

[14] Simon Brown. (2013) "What is agile software architecture?"
http://www.codingthearchitecture.com/2013/09/03/what_is_agile
_software_architecture.html [last accessed on June 22, 2017].

[15] Jan Stenberg. (2014) “Experiences from Failing with
Microservices“ https://www.infoq.com/news/2014/08/failing-
microservices [last accessed on June 23, 2017].

[16] Kwan, Irwin, Marcelo Cataldo, and Daniela Damian. (2012): 90-

93. "Conway's law revisited: The evidence for a task-based
perspective." IEEE software 29.1.

[17] Shull, Forrest, Janice Singer, and Dag IK Sjøberg, eds. 2007
Guide to advanced empirical software engineering. Springer
Science & Business Media.

[18] Creswell, John W. 2013. Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications.

175

