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Abstract: With their ability to convert chemically bound energy directly into electrical energy, solid oxide fuel 
cells (SOFCs) are a promising solution to meet the increasing demand for clean and efficient electricity. To 
accelerate the successful commercialization of this technology, knowledge of the optimal process 
parameters for efficient, long-term stable and safe operation is of great importance. To reduce the amount 
of time-consuming and money-consuming experiments required to determine the optimal operating 
parameters, we used artificial intelligence and combined it with various optimization algorithms to optimize 
the process parameters of a SOFC. Using a stacked artificial neural network with algorithm-optimized model 
architecture, we were able to predict the cell voltage of an industrial-scale electrolyte-based SOFC from the 
cell temperature, gas composition and flow rate on the fuel side, air flow rate, and current. Due to the 
tremendous prediction speed in the range of milliseconds, a genetic algorithm could be used to optimize the 
process parameters. The optimization resulted in electric efficiencies >54% and process efficiencies >68% 
with 80% fuel utilization for operation with methane/steam mixtures and electrical system efficiencies of 
>66% for operation with hydrogen/steam mixtures and ideal exhaust gas recirculation.  
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1. INTRODUCTION 

In this age of climate change and skyrocketing electricity and energy prices, clean, reliable and efficient 
power generation is of significant importance. High-temperature solid oxide fuel cells (SOFCs) enable the 
direct conversion of chemically bound energy of gaseous fuels into electricity, without the limitations of 
Carnot efficiency. SOFCs are thus a technology with great potential to meet this demand for clean and 
efficient electricity generation. Due to their high operating temperature in the range of 700-1000°C, 
precious metals such as platinum are not required. 
 In addition, unlike low-temperature fuel cells, SOFCs can run on a wide range of fuels, including hydrogen, 
ammonia, and hydrocarbons such as methane, methanol, or even biodiesel. Despite its unique properties 
and advantages, further research on this technology is needed for successful large-scale commercialization. 
In particular, knowledge of efficient but long-term stable and safe operating parameters is essential for 
proper operation on an industrial scale. In order to determine these operating parameters, time-consuming 
and costly experiments usually have to be performed. The authors of this paper propose a cheaper and 
faster alternative by using modeling, algorithm-based optimization and artificial intelligence. Several steps 
were necessary to get optimized operation parameters. In Figure 1 the steps conducted for this work are 
summarized.  

Figure 1: Simplified workflow of SOFC operation parameter optimization 



In a first step a multi-physics SOFC model was used to generate a dataset, which represents the whole 
potential operation range. After preprocessing, this data is used to set up and train an artificial neural 
network (ANN) model. Both the multi-physics and the ANN model were validated by means of experimental 
data. The trained and validated ANN model is coupled with a meta-heuristic optimization algorithm (genetic 
algorithm) to enable a fast optimization of the operation parameters. Following this approach four different 
scenario cases were investigated:  

• Maximum electric efficiency with H2/H2O – mixtures as fuel and off-gas recirculation 

• Maximum electric power output with H2/H2O – mixtures as fuel 

• Maximum electric efficiency with CH4/H2O – mixtures as fuel  

• Maximum electric power output with CH4/H2O – mixtures as fuel  

2. METHODS 

In the following section mainly used methods (see Figure 1) are described more in detail. 

2.1 Multi-physics model 

To have an as accurate as possible representation of a real SOFC, a 2D multi-physics SOFC model based on 
more than 120 equations (Subotić et al., 2020), was further enhanced by reaction kinetics (represented by 
Maier et al., 2011), heat fluxes and local current density distribution (Goodwin et al., 2021). With this 
complex model the cell voltage, temperature distribution in flow direction, local current density 
distribution and the magnitude of the ohmic-, activation- and concentration-over potential can be 
predicted for the cells used. In order to examine the accuracy of the model developed, predictions of the 
model were compared with measured data from industrial-sized (81 cm² active area) single cell tests. 
Maximum deviations of 2.1% could be observed. The time required to compute the cell voltage for one 
operation mode (= temperature, gas composition and current density) with this model is in the range of 2-
3 minutes. A direct combination of a multi-physics SOFC model and an optimization algorithm (e.g. a genetic 
algorithm) therefore might result in an undesired long computation time. 

2.2 Artificial neural network model 

In order to have a prediction speed, that is fast enough for the coupling with the genetic algorithm, an 
artificial neural network (ANN) was used in this work. With this meta-model, the cell voltage for a set of 
input parameters, namely: current density, cell temperature, mass flow rate of H2, H2O, CO, CO2, CH4 and 
N2, could be predicted within milliseconds. To achieve a high model consistency and prediction accuracy, a 
repeated k-fold cross validation with cyclic learning rate and an algorithm-based hyperparameter-tuner 
was implemented. These measures led to a negligible additional prediction error of 3mV at maxima, 
whereby a speed-up by a factor of >3500 compared to the multi-physical model could be achieved. For 
more details on the specific details of the individual steps interested readers may have a look at (Mütter et 
al., 2023).  

2.3 Genetic algorithm 

A genetic algorithm is a meta-heuristic that mimics the process of natural selection and evolution. In 
general, this algorithm consists of four steps which are repeated until a certain performance criteria or the 
maximum number of iteration is reached. 

• Selection: A population of input parameters is evaluated regarding its “fitness” and only the fittest 
share is selected to form new a new members of the population. 

• Recombination: Pairs from the selected fitter share of the population are recombined to form 
“parents”. These parents combine their features to form new population members until the 
population limit is reached  

• Mutation: Some features of the newly formed population members may be mutated randomly. 

• Evaluation: The population is evaluated again regarding its fitness 
Due to two different scenarios (CH4/steam and H2/steam operation) and two different optimization 
targets (max. efficiency, max. el. power) per scenario, several different fitness functions were defined.  
To maximize the electric power for both CH4/steam and H2/steam operation, the fitness function was 
defined as: 
 



𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑐𝑒𝑙𝑙 ∙ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦                     (1) 

For the optimization of electric system efficiency of the H2/steam scenario, the efficiency was defined as: 
  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑠𝑦𝑠. =
𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝐿𝐻𝑉𝐻2 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑  
       (2) 

Thereby the unused fuel was assumed to be recirculated with an ideal off-gas recirculation (e.g.: an ejector). 
For the operation scenario with methane no off-gas circulation was assumed, as its implementation would 
be much more complex. In order to avoid a CO2 saturation of the fuel gas, CO2 would have to be removed 
from the exhaust gas, which increases system complexity and cost significantly. The electric efficiency for 
the optimization was defined in a similar way as for the H2/steam-case as: 
 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑒𝑙𝑙. =
𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝐿𝐻𝑉𝐶𝐻4 𝑖𝑛𝑙𝑒𝑡 
        (3) 

 

Because the unused fuel can further be utilized, e.g. in gas turbine, in addition to the definition for the 
fitness function, also only the directly in the SOFC processed fuel was considered for the CH4/steam 
efficiency case as process efficiency: 
 

𝜂𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝐶𝐻4/𝑆𝑡𝑒𝑎𝑚 =
𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝐿𝐻𝑉𝐶𝐻4 𝑖𝑛𝑙𝑒𝑡 · 𝐹𝑢𝑒𝑙 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
   (4) 

 

With the fitness functions defined above, for each scenario and optimization target optimal process 
parameters were searched. One optimization run thereby required <1h to converge. 

3. RESULTS  

3.1  Scenario Methane/Steam 

For the operation with methane and steam the optimization was facilitated within the boundaries defined 
in Table 1.  

 

 Max Min Unit 

Fuel flow rate ~0.75 ~0.32 slpm 

S/C-ratio 2 1.5 - 

Temperature 805 850 °C 

Fuel utilization 80 20 % 

Current 90 13 A 

Voltage - 0.65 V 

 
The overall fuel flow rate could be defined at such low rates due to the internal reforming reaction of 
methane. Through that reaction one mole of methane and one mole of steam are converted to 3 moles of 
hydrogen and one mole of carbon monoxide (see (5)) and thus increase the overall volumetric fuel flow 
rate within the fuel cell. 
 

𝐶𝐻4 +  𝐻2𝑂 ↔ 𝐶𝑂 + 3 𝐻2         (5) 
 

The Steam/Carbon ratio, which is defined as the molar fluxes of steam over the molar fluxes of all 
carbonaceous species (in this case only methane):  
 

𝑆 𝐶⁄ − 𝑟𝑎𝑡𝑖𝑜 =  
𝑛̇𝑠𝑡𝑒𝑎𝑚

𝑛̇𝐶𝐻4

     (6) 

is a metric, which can be used to evaluate the risk of carbon depositions. Those unwanted depositions 
cause a deactivation of the catalytic active surface of the SOFC and thus should be avoided. The range of 
the S/C-ratio was defined to stay within safe, yet reasonable operation modes where no carbon deposition 
may occur. The temperature range was defined in a way, so that the recommended temperature from the 
cell manufacturer (835°C) lies within the boundaries. Fuel utilization was limited according to 
manufacturer’s recommendation and the current limited based on the capabilities of the in-house available 

Table 1: Optimization domain and boundary conditions for CH4/steam scenario.  

 
 



measurement equipment. Due to potential Ni-reoxidation below 0.65V the cell voltage was limited to 
values above 0.65V for the optimization.  
For the maximum power optimization target, an electric power up to 53.5 W of electric power were 
suggested by the optimization algorithm. Thereby the following operation conditions were revealed as 
favourable: 

• Maximum possible temperature 

• Lowest allowable S/C-ratio 

• Maximum possible fuel flow rate 

• Highest possible current without violating the lower voltage border 
For the maximum power optimization target in the H2/steam-scenario, the same operation conditions as 
for the maximum power CH4/steam scenario were revealed as favourable, whereby an electric power 
output of up to 60 W could be achieved: 

• Maximum possible temperature 

• Maximum possible fuel flow rate 

• Highest possible current 
To have a more realistic system evaluation, thermal losses were also considered for the efficiency 
evaluation. Overall, the thermal losses were assumed to be 10% of the total thermal energy within the 
system. These losses were considered by means of a heat exchanger with 90% efficiency. With this added 
heat exchanger also the pre-heating of fuel and air gas streams, as well as additionally required heating 
within the oven could be considered. 
In Figure 2, the results of the efficiency optimization for the scenario CH4/steam were visualized in a Sankey 
diagram. Thereby chemical bound energy is held in blue, thermal bound energy in red and electric energy 
is coloured in yellow and the following operation parameters and assumptions (marked with *) were used:  

 

 
 
Without considering the fuel utilization an electric efficiency of 54% could be achieved. Considering the 
fuel utilization, a process efficiency of up to 68% was observed (see equation (4)).  

3.2  Scenario Hydrogen/Steam 

For the scenario with only hydrogen and steam as fuel mixture the potential operation range for the 
optimization can be seen in Table 3. 
 
 
 

Fuel util. Temperature CH4 H2O Air flow rate Heat exchanger eff. El. Power 

79% 850°C 0.126 slpm 0.19 slpm 4 slpm 90%* 40.8 W 

Figure 2: Sankey diagram for optimization target “maximum electric efficiency” for the CH4/steam scenario. Blue paths 
represent chemical bound energy, red paths thermal bound energy and the yellow path represents electric energy. Oven 

cooling was used to close the energy balance. 

Table 2: Input values suggested by optimization algorithm for the CH4/steam scenario for maximum electric efficiency. 



 Max Min Unit 

Fuel flow rate 2.437 0.522 slpm 

Temperature 805 850 °C 

Fuel utilization 80 20 % 

Current 90 13 A 

Voltage - 0.65 V 

 
The overall fuel flow rate range was defined with higher boundary values than for the CH4/steam case due 
to the missing internal reforming that would have increased the fuel flow rate. For the parameters 
temperature, fuel utilization, current and voltage the same limitations than for the CH4/steam case were 
applied. 

In Figure 3 the results of the efficiency optimization for the scenario H2/steam were visualized in a Sankey 
diagram. Thereby chemical bound energy is held in blue, thermal bound energy in red and electric energy 
is coloured in yellow and the following operation parameters  
and assumptions (marked with *) were used: 

 

4. DISCUSSION 

4.1  Scenario Methane/Steam 

The trends revealed for the maximum power output case can be explained as follows: 
With maximum temperature the ionic conductance of the electrolyte is increased and thus the 
overpotential is reduced. This means that a higher current can be drawn from the cell and thus higher 
electric power output is achieved. The lowest allowable S/C-ratio leads to the highest possible reactant 
concentration in the fuel composition and together with higher overall fuel flow rates the chance of local 
fuel starvations that would lead to higher losses is reduced. 
The reason, why maximum possible temperature and lowest allowed S/C-ratio are favourable also for 
maximum electric efficiency operation can be explained in the same way as for the maximum power case. 
In contrast to the maximum power case for maximum efficiency the fuel utilization rate is of higher 
importance. Every unused quantity of fuel has a direct negative influence on the electric efficiency as it 
increases the denominator in Equation (3) without also increasing the electric power output, leading to a 
lower electric efficiency. The suggestion of applying the lowest possible overall fuel flow rate can be 
explained with the reduction of diffusion losses with lower fuel flow rates.  

Fuel util. Temperature H2 H2O Air flow rate Heat exchanger eff. El. Power 

30%** 850°C 0.784 slpm 0.196 slpm 4 slpm 90%* 28.1 W 

Table 3: Optimization domain and boundary conditions  for H2/Steam scenario 

** 30% of the total hydrogen supplied to the SOFC is utilized 

Table 4: Operation parameters for case „maximum electric efficiency“ in hydrogen/steam scenario 

Figure 3: Sankey diagram for optimization target “maximum electric efficiency output” for scenario H2/steam with 
off-gas  recirculation 



4.2  Scenario Hydrogen/Steam 

In contrast to the CH4/steam scenario, where the algorithm suggested solutions at the lower voltage limit, 
for the H2/steam scenario solutions with current values at the upper current limit were suggested. This 
behaviour can be explained by several effects. Firstly, with both H2 and CO in the fuel mixture the Nernst 
voltage is lower than with just H2 in it. Secondly, due to larger molecular size CO may cause higher diffusion 
losses and thirdly reaction kinetics for the H2 are faster than for CO.For the maximum electric efficiency 
optimization target values above 70 % were suggested by the optimization algorithm. These values were 
only reached when thermal losses were neglected. When considering thermal losses of 10% of the overall 
thermal bound energy (here modelled as heat exchanger losses) a slight reduction of the overall achievable 
electric efficiency to around 67 % could be observed (see Figure 3). An explanation for that is that it is more 
efficient to utilize process heat from the SOFC than to electrically compensate (=heat up) the losses that 
occur.  

5. CONCLUSIONS 

The optimization revealed the following main trends regarding desirable operation parameters: 

• Maximum temperature for both scenarios (operation with hydrogen and methane) and both 
max. efficiency and max. power 

• Minimum allowable S/C-ratio for CH4/steam mixtures 

• Trade-Off between electric efficiency and electric power output 
The highest electric power achieved through the optimization was in scenario H2/steam with up to 60W for 
a commercial sized electrolyte supported single cell (126.5cm² active surface area). Electric efficiencies 
higher than 67% could be achieved for H2/steam operation when using off-gas recirculating and assuming 
10% thermal losses. Operation with CH4/steam led to slightly lower performance values with ~54W 
maximum power and 54% electric efficiency at 79% fuel utilization. Thereby it has to be highlighted that 
no off-gas recirculation was assumed for this case and thus 20% of the reactants are discarded unutilized. 
When just considering the processed fuel gases a process efficiency of 68% was observed for the CH4/steam 
operation scenario. With the method shown in this work, the optimization of the process parameters of 
industrial-sized solid oxide fuel cells could be carried out with significantly less time and financial effort 
than if experiments were performed. By using artificial neural networks as a meta-model, the time to 
predict the voltage for a set of operating parameters was reduced by more than 3500 times compared to 
the multi-physics model originally used. This speedup enabled the use of a genetic algorithm to optimize 
the process parameters, which required less than an hour in total to optimize the process parameters for 
one scenario and one optimization objective, which is significantly less than that required with experiments. 
With the time and cost reduction achieved, the commercialization of SOFC technology could be significantly 
accelerated. 
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