
Demystifying Sonar Tool Estimates in the Contexts of Familiar and
Unfamiliar Software Projects: An Empirical Study with Junior Developers
Andrej Katin 1 [ORCID 0000-0001-9755-3733], Nebojša Taušan 2 [ORCID 0000-0001-9663-7951], Valentina Lenarduzzi 3

[ORCID 0000-0003-0511-5133], Vladimir Mandić 1 [ORCID 0000-0001-6996-2222]
1 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

2Faculty of Economics, University of Novi Sad, Novi Sad, Serbia
3University of Oulu, Oulu, Finland

Abstract: Developing a high-quality software product requires complete familiarity with the software
product requirements and constraints. However, developers are often assigned to projects they are
unfamiliar with, making project properties hard to understand for them. Sonar tool is one of the most
popular Automated Static Analysis Tools that nowadays has become an integral part of software
development process. The objective of this study is to evaluate the usefulness of the Sonar tool in the context
of familiar and unfamiliar projects. More specifically to investigate the accuracy of Sonar’s estimates while
the remaining three assess the perceived refactoring difficulties, Sonar issue and fixing instructions as
possible reasons for differences in estimates. A repeated measurements experiment in the context of a
university course was designed and involved two sessions during which the subject refactored Sonar issues
identified in familiar and unfamiliar projects. In total 60 students completed assignments, who in two
sessions combined refactored 5,179 Sonar issues by violating 138 different Sonar rules. This study showed
that estimates provided by Sonar are less accurate for familiar projects. Plausible explanations are that the
refactoring and understandability of Sonar tool issue description seem to be more challenging in unfamiliar,
compared to familiar projects.

Key words: Empirical Software Engineering, Technical Debt, SonarQube

1. INTRODUCTION

In order for developers to deliver high-quality software, their familiarity with the software project is
essential. For developers to be familiar with projects, they need to understand the context and decisions
made from the beginning of the project. Including decisions regarding software design, architecture, and
requirements [1]. Thus, the concept of familiarity surpasses the understanding of the code itself. However,
developers are often assigned to projects they are unfamiliar with, making project properties hard to
understand for them. This requires developers to familiarize themselves with the project by reviewing the
code base and available documentation.
Various software tools can be used to aid developers while reviewing code base and identifying potential
issues in projects. Automatic static analysis tools (ASAT) provide feedback in the form of analysis reports
[2]. Sonar1 as one such tool has proven to be very useful for identifying various quality issues [2, 3]. It
provides a set of code smell detection rules for different programming languages and various metrics that
are used together as means for identifying and estimating the cost of remedying issues in a code base [4].
Furthermore, Sonar's reports aid developers in identifying potential suboptimal software design and
implementation choices [2. 5]. This phenomenon is conceptualized as technical debt (TD) [6]. Benefits of
the Sonar tool are that it provides effort estimates, issue descriptions and instructions for refactoring the
source code to remediate the identified TD issues. Such instructions can significantly affect the productivity
of developers, especially if they are novice or junior [7, 8]. Where novice developers are often unfamiliar
with projects assigned to them.
In the past years, several studies have been conducted that have focused on defining the accuracy of
estimates provided by Sonar tool [3. 7, 8, 9]. The general conclusion is that the Sonar tool gives an
overestimated remediation time and that the level of criticality identified for each issue does not match
the perception of junior developers [3, 8].
In practice it is very common to have new members joining ongoing projects. For them the code base is
unknown—unfamiliar project—while for other team members it is a known code base or familiar project.
Managing such teams requires clear expectations regarding Sonar's estimates and how they translate to

1 Sonar: https://www.Sonar.org/

the newly joined team members vs others. However, to the best of our knowledge there are no studies
that intentionally compared the use of Sonar tool in the contexts of familiar and unfamiliar projects.
The objective of this research is to investigate the usefulness of Sonar’s analysis reports in the contexts of
familiar and unfamiliar software projects. We investigated the accuracy of the provided estimates and the
perceived understandability of Sonar's feedback by junior developers in the context of these two types of
projects. We designed and conducted an experiment within a university course. The experiment consisted
of two separate sessions, i.e. repeated measurements design [10, 11], where students in the first session
were tasked with refactoring identified TD issues in prior unknown to them open-source projects
(unfamiliar projects) while for the second session they were first instructed to designed and implement
projects from scratch and generate Sonar’s report with TD issues used for refactoring in the second session
(familiar projects).

2. RELATED WORK

In this section, we selected important papers for the research we conducted. All papers can be divided into
two subgroups: (1) empirical research that dealt with the use of ASAT tools in projects that were familiar
to the respondents, and (2) empirical research that dealt with the use of ASAT tools in projects with which
respondents were not familiar.
Regarding empirical research in the context of familiar projects, Tan et al [18] designed an empirical study
in which they used 20 Python and 16 Java projects, observing their first 2000 commits on repositories, with
the aim of trying to estimate in what percentage the identified TD is resolved independently. They used the
Sonar tool for analysis. As the initial commits on the repositories were examined, it exactly corresponds to
the way of work that we also checked in our research where projects were created from the very beginning.
In the research, the results were obtained that almost half of the Sonar issues are self-fixed.
While in the context of unfamiliar projects, Nunes et al. [19] analyzed the impact of two different ASAT
tools on projects implemented in modern development environments. The focus was on web applications
and how ASAT tools affect the identification of potential vulnerabilities. Sonar tool was not one of them.
Vassallo et al. [20] included 176 open-source projects in their research in order to investigate whether and
in what way developers accept the results of the ten different ASAT tools. The results showed that more
than 60 percent of developers pay attention to the results of the analysis and are ready to accept them as
a regular practice. In another paper, Lenarduzzi et al. [23] used unknown projects up to twelve years of
age. The research focused on evaluating the usefulness of Sonar when translating a system architecture
from monolithic to microservices. The results showed that after a short period of time, TD in the
microservice architecture is significantly less compared to monolithic systems and that Sonar proved to be
very useful.
With this brief review of papers that focused on examining the performance of ASAT tools in different areas
of their application, we can also find the basic motivation for conducting such research. Namely, we see
great scope in examining the impact of ASAT tools on the work of developers, depending on their familiarity
with the project.

3. METHODOLOGY

The methodology is designed following the guidelines from Wohlin et al.[11], while the replicability of the
study is supported with a publicly accessible replication package (https://bit.ly/3p70R7u}).
The goal of this study is formally expressed using GQM template [27]: Analyze the Sonar tool analysis report
for the purpose of evaluation with respect to usefulness from the point of view of junior developers in the
context of unfamiliar and familiar software projects. Following this goal, the study focused on four aspects
that were embodied in the following hypothesis:

 H1: Remediation estimates provided by Sonar tool are more accurate in the context of familiar
projects compared to unfamiliar project context.

 H2: Issue descriptions provided by Sonar tool are easier to understand in familiar compared to
unfamiliar project context.

 H3: Fixing descriptions provided by Sonar tool are easier to understand in familiar compared to
unfamiliar project context.

 H4: Familiar projects are easier to refactor compared to refactoring unfamiliar projects.
The experimental sessions were designed as one factor with two treatments. The experiment relied on a
within subject repeated measurements design with two objects. Figure 1 summarizes the experimental
design, while the remaining paragraphs further elaborate the concepts presented in the figure.

Figure 1: Experimental design

Subjects are senior year students of Information systems engineering curriculum. The subjects were sought
as a proxy for junior developers since. The object of the study is the Sonar analysis report of the unfamiliar
projects, for the first session, and of familiar projects, for the second session. The analysis report consists
of identified Sonar issues that are characterized with estimated time for remediation, issue description,
fixing description and issue categorization. Independent variable is project type with two levels: unfamiliar
projects and familiar projects. Dependent variables are calculated times for fixing Sonar issues (H1),
perceived understandability of Sonar's issue description (H2), perceived understandability of Sonar's issue
fixing instructions (H3), and the perceived refactoring difficulty (H4).
The session protocol presents three groups of activities, which are: (a) The initial activities included training
on the usage of the Sonar tool and project diary, which was one of the data collection instruments, (b)
Session preparation activities differed for the first and second session. During the preparations for the first
session, students selected, and lecturers checked and approved an open-source project found in the public
repository (https://github.com). During the preparations for the second session, subjects used the provided
software specification, to design and develop a software solution using .NET/C\# technology. This solution
was seen as a familiar project that is analyzed during the second session. Finally, in (c) experiment sessions
subjects had to remediate the identified issues and to record the data to project diary.
Data collection was realized using three data collection instruments: the profiling survey, Sonar tool and
project diary. Profiling survey was implemented as an on-line (web) survey, and it was executed at the
beginning of the course, thus before the experiment sessions. The survey contained a total of six different
closed-typed questions, and there was no possibility to skip any of the questions. Survey questions probed
subjects' programming experience, familiarity with code refactoring, as well as with ASAT tools and with
the concept of technical debt. Subject used the project diaries to record the data. Within the project diary,
each of the remediated issues had to be characterized with data such as issue ID, estimated and actual
remediating time, assessment of the perceived refactoring difficulty, understandability of issue description
and fixing instructions.
The data analysis of the Sonar tool's remediation estimates, and test the H1, the mean magnitude of relative
error (MMRE) and mean relative error metrics (MeRE) were used. These metrics are defined in the
literature [3], and it is calculated for each subject as:

𝑀𝑀𝑅𝐸 =
1

𝑛
 𝑀𝑅𝐸

ୀଵ

 𝑀𝑅𝐸 =
|𝑇(𝑖) − 𝑇ா(𝑖)|

𝑇(𝑖)
 𝑀𝑒𝑅𝐸 =

1

𝑛
 𝑅𝐸

ୀଵ

 𝑅𝐸 =
𝑇(𝑖) − 𝑇ா(𝑖)

𝑇(𝑖)

where n is the total number of Sonar issues remediated by subject. MREi represents the magnitude of the
relative error for the i-th issue, REi represents a relative error for the i-th issue, TA(i) stands for actual time
the subject used to remediate the i-th issue, and TE(i) stands for the time estimate for remediating the i-th
issue. Low MMRE, MRE, MeRE and RE values means that the differences between estimated and actual
times for remediating the issues are also small, thus making the estimates more accurate. The formulas
were, therefore, used to calculate: (a) are there any differences between the measurements in two
sessions, and (b) which session has higher mean relative error. Consequently, the H1 is tested using two
statistical hypotheses H{1.1} that relies on MMRE, and H{1.2} that relies on MeRE. The remaining hypothesis
were tested based on subjects' assessment of the perceived understandability of the Sonar's issue
description (PID) for H2, the perceived understandability of the Sonar's fixing instructions (PFI) for H3, and
the perceived refactoring difficulty (PRD) to eliminate each identified issue for H4.

4. RESULTS

Demographics: The research was done in the context of a software engineering university course with
fourth year undergraduate students at the University of [Anonymized for review] enrolled at Information
Systems Engineering study program. In total 72 students attended the course and 60 of them participated
in the experiment as subjects. Most of the subjects have between 2 to 4 years of programming experience
(Figure 2.Q1). Also, about one fourth of participants (Figure 2.Q1a) have worked in industry. The profiling

survey analysis revealed that participants are largely unfamiliar with TD concept and ASAT. A summary of
the demographics data is presented in Figure 2.

Figure 2. Demographics: Q1. Years of programming experience, Q1a. Experiences working in industry, Q2. Familiarity

with the TD concept, Q3. Familiarity with refactoring practices, and Q5. Familiarity with ASAT tools.

The dataset consists of 2268 refactored Sonar issues in the first session and 1016 refactored issues in the
second session. Out of these issues, 135 unique Sonar rules were violated in the first and 43 unique rules
were violated in the second session. In total, 40 unique (or overlapping) rules were present in both sessions.
Rule category wise, the majority of the violated rules are categorized as bug and code smell. Consequently,
it can be asserted that the complexity of all the remediated issues, in both sessions, is highly similar.
Hypotheses testing relied on the following statistics: Shapiro-Wilk test was used to check the normality
assumption of the data. The Wilcoxon signed-rank test was used as a non-parametric alternative to paired
t-test to test the differences between the paired values from two sessions. For all tests we set the
significance criterion as 0.05. Finally, Rank-Biserial Correlation (rB) was used to test the effect size and
interpreted according to Goss-Sampson [28]. Calculated W statistics and p-values for each variable MMRE,
MeRE, PID, PFI, and PRD, and for each session: unfamiliar projects, and familiar projects. Based on the test
results the normality assumption can be accepted for MMRE and MeRE measured in first session (p > 0.05),
while rejected for the remaining variables (p < 0.05). Thus, a non-parametric Wilcoxson Signed Rank test
was used to assess the differences.
Hypothesis H1 is tested using two variables, MMRE for testing the differences between the measurements
using two-sided test. And variable MeRE for assessing the higher relative error in estimated time for the
issues remediation. It can be concluded that the Sonar Tool overestimates the time needed to remediate
the identified issues in both the unknown and known project context—hence the negative MeRE values. It
can also be concluded that developers need more time to remediate the issues when working on unfamiliar
projects, compared to time needed for working on familiar projects. Test of hypothesis H2 indicates that
developers perceived the Sonar issue descriptions less understandable in session s1 (unfamiliar projects)
compared to s2 (familiar projects). The third hypothesis is tested using the PFI variable and both one and
two-sided test, suggesting that perceived understandably of fixing instructions provided by Sonar tool does
not differ session wise. The fourth hypothesis was tested by comparing the PRD variables using one-sided,
paired test, for which the null hypothesis was rejected, leading to conclusion that the perceived refactoring
difficulty in unfamiliar project context is more difficult, compared to refactoring of familiar projects. Figures
3 and 4 present the box plots for tested variables.

Table 1: Hypothesis test results

Hypothesis Wilcoxon Signed Rank Test (p < 0.05) Decision
 𝐻ଵ.ଵ

 ∶ 𝜇௦ଵ(𝑀𝑀𝑅𝐸) = 𝜇௦ଶ(𝑀𝑀𝑅𝐸)
 𝐻ଵ.ଵ

 ∶ 𝜇௦ଵ(𝑀𝑀𝑅𝐸) <> 𝜇௦ଶ(𝑀𝑀𝑅𝐸) V = 204, p = 1.691e – 7 (two-sided) Rejected

 𝐻ଵ.ଶ
 ∶ 𝜇௦ଵ(𝑀𝑒𝑅𝐸) = 𝜇௦ଶ(𝑀𝑒𝑅𝐸)

 𝐻ଵ.ଶ
 ∶ 𝜇௦ଵ(𝑀𝑒𝑅𝐸) <> 𝜇௦ଶ(𝑀𝑒𝑅𝐸) V = 1657, p = 2.399e – 8 (one-sided) Rejected

 𝐻ଶ
 ∶ 𝜇௦ଵ(𝑃𝐼𝐷) = 𝜇௦ଶ(𝑃𝐼𝐷)

 𝐻ଶ
 ∶ 𝜇௦ଵ(𝑃𝐼𝐷) <> 𝜇௦ଶ(𝑃𝐼𝐷) V = 148, p = 0.009226 Rejected

 𝐻ଷ
 ∶ 𝜇௦ଵ(𝑃𝐹𝐼) = 𝜇௦ଶ(𝑃𝐹𝐼)

 𝐻ଷ
 ∶ 𝜇௦ଵ(𝑃𝐹𝐼) <> 𝜇௦ଶ(𝑃𝐹𝐼) V = 129, p = 0.6247 (two-sided) Accepted

 𝐻ଷ
 ∶ 𝜇௦ଵ(𝑃𝐹𝐼) = 𝜇௦ଶ(𝑃𝐹𝐼) V = 129, p = 0.3123 (one-sided) Accepted

 𝐻ଷ
 ∶ 𝜇௦ଵ(𝑃𝐹𝐼) > 𝜇௦ଶ(𝑃𝐹𝐼)

 𝐻ସ
 ∶ 𝜇௦ଵ(𝑃𝑅𝐷) = 𝜇௦ଶ(𝑃𝑅𝐷)

 𝐻ସ
 ∶ 𝜇௦ଵ(𝑃𝑅𝐷) <> 𝜇௦ଶ(𝑃𝑅𝐷) V = 434, p = 2.022e - 05 Rejected

Finally, the effects sizes are calculated for hypotheses using Rank-biserial correlation. For all hypotheses
the effect size is large with (95% confidence interval), except for H3 the effect size is small (rβ=0.12).

Figure 3: Box plots for MMRE and MeRE.

Figure 4: Box plots for PID, PFI, and PRD.

5. CONCLUSIONS

This paper presents the findings of an empirical study that was conducted in the context of a university
course, with an objective to investigate the impact of the project familiarity on the usefulness of feedback
generated by Sonar tool. Our findings confirm previous studies that Sonar overestimates remediation effort
[3, 8], which is a case for both types of projects as well. However, the estimates are more accurate for the
unfamiliar projects than for the familiar ones. Furthermore, it seems that the understandability of the fixing
instructions provided by Sonar is not impacted by project type, while Sonar's descriptions of identified
issues were significantly less understandable for unfamiliar projects. The plausible explanation is that fixing
instructions are decontextualized and sufficiently self-explanatory, while understanding issues descriptions
require understanding of the targeted code base for which issues were identified. Finally, the data showed
that developers tend to understand easier the Sonar's issue descriptions when they are involved in the
project from the start. Also, this study showed that estimates provided by Sonar tool are less accurate for
familiar projects. One plausible explanation is that in such projects refactoring seems to be less challenging.

ACKNOWLEDGMENT

The research presented in this paper is partially supported by the project “Implementation of the results
of scientific research work in the field of Industrial Engineering and Management in DIIM teaching
processes with the aim of their continuous improvement”, at the Department of Industrial Engineering and
Management, Faculty of Technical Sciences, University of Novi Sad, Republic of Serbia.

REFERENCES

V. Mandić, M. Oivo, P. Rodríguez, P. Kuvaja, H. Kaikkonen, and B. Turhan, “What is flowing in lean software
development?” in Lean Enterprise Software and Systems: First International Conference, LESS 2010, Helsinki, Finland,
October 17-20, 2010. Proceedings. Springer, 2010, pp. 72–84.

P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker, A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, A.
Moschou, I. Pigazzini, N. Saarimaki, D. D. Sas, S. S. de Toledo, and A. A. Tsintzira, “An overview and comparison of
technical debt measurement tools,” IEEE Software, vol. 38, no. 3, pp. 61–71, 2021.

V. Lenarduzzi, V. Mandi ́c, A. Katin, and D. Taibi, “How long do junior developers take to remove technical debt items?”
in International Symposium on Empirical Software Engineering and Measurement, 2020.

A. Katin, V. Lenarduzzi, D. Taibi, and V. Mandić, “On the technical debt prioritization and cost estimation with sonarqube
tool,” Int. Sci. Conf. on Industrial Systems Industrial Innovation in Digital Age, 2020.

S. Freire, N. Rios, B. Pérez, C. Castellanos, D. Correal, R. Ramač, V. Mandić, N. Taušan, G. López, A. Pacheco, M.
Mendonça, D. Falessi, C. Izurieta, C. Seaman, and R. Spínola, “Software practitioners’ point of view on technical debt
payment,” Journal of Systems and Software, vol. 196, p. 111554, 2023.

R. Ramač, V. Mandić, N. Taušan, N. Rios, S. Freire, B. Pérez, C. Castellanos, D. Correal, A. Pacheco, G. Lopez, C. Izurieta,
C. Seaman, and R. Spinola, “Prevalence, common causes and effects of technical debt: Results from a family of surveys
with the it industry,” Journal of Systems and Software, vol. 184, 2022.
V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some sonarqube issues have a significant but small effect on faults and
changes. a large-scale empirical study,” Journal of Systems and Software, vol. 170, 2020.

A. Katin, V. Lenarduzzi, D. Taibi, and V. Mandi ́c, “On the technical debt prioritization and cost estimation with
sonarqube tool,” in Proceedings on 18th International Conference on Industrial Systems–IS’20: Industrial Innovation in
Digital Age. Springer, 2022, pp. 302–309.

M. T. Baldassarre, V. Lenarduzzi, S. Romano, N. Saarimäki, “On the diffuseness of technical debt items and accuracy of
remediation time when using sonarqube,” Inf. and Software Technology, vol. 128, p.2020.
N. Juristo and A. M. Moreno, Basics of software engineering experimentation. Springer Science & Business Media, 2013.
C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in software engineering.
Springer Science & Business Media, 2012.

G. A. Campbell and P. P. Papapetrou, SonarQube in action. Manning Publications Co., 2013.

P. H. de Andrade Gomes, R. E. Garcia, G. Spadon, D. M. Eler, C. Olivete, and R. C. M. Correia, “Teaching software quality
via source code inspection tool,” IEEE Frontiers in Education Conference, 2017, pp. 1–8.

D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and G. Pinto, “Are static analysis violations really fixed? a
closer look at realistic usage of sonarqube,” in 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). IEEE, 2019, pp. 209–219.

I. Tollin, F. A. Fontana, M. Zanoni, and R. Roveda, “Change prediction through coding rules violations,” in Proceedings
of the 21 Int. conference on evaluation and assessment in software engineering, 2017,

J.-L. Letouzey, “The sqale method for evaluating technical debt,” in 2012 Third International Workshop on Managing
Technical Debt (MTD). IEEE, 2012, pp. 31–36.

T. D. Oyetoyan, B. Milosheska, M. Grini, and D. Soares Cruzes, “Myths and facts about static application security testing
tools: an action research at telenor digital,” 19th Int. Conference on Agile Processes in Software Engineering and
Extreme Programming, Portugal, 2018,Springer International Publishing

J. Tan, D. Feitosa, and P. Avgeriou, “Does it matter who pays back technical debt? an empirical study of self-fixed td,”
Information and Software Technology, vol. 143, p. 106738, 2022.

P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira, “An empirical study on combining diverse static
analysis tools for web security vulnerabilities based on development scenarios,” Computing,
vol. 101, pp. 161–185, 2019

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman, “How developers engage with static analysis
tools in different contexts,” Empirical Soft. Engineering, vol. 25, pp. 1419–1457, 2020

R. Alfayez, R. Winn, W. Alwehaibi, E. Venson, and B. Boehm, “How Sonarqube-identified technical debt is prioritized:
An exploratory case study,” Information and Software Technology, p. 107147, 2023.

V. Lenarduzzi, A. Martini, D. Taibi, and D. A. Tamburri, “Towards surgically-precise technical debt estimation: Early
results and research roadmap,” 3rd ACM SIGSOFT International workshop on machine learning techniques for software
quality evaluation, 2019, pp. 37–42.

V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does migrating a monolithic system to microservices decrease the
technical debt?” Journal of Systems and Software, vol. 169, p. 110710, 2020

I. Ahmed, U. A. Mannan, R. Gopinath, and C. Jensen, “An empirical study of design degradation: How software projects
get worse over time,” in 2015 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 2015, pp. 1–10

C. F. Kemerer and S. Slaughter, “An empirical approach to studying software evolution,” IEEE transactions on software
engineering, vol. 25, no. 4, pp. 493–509, 1999

N. Rachatasumrit and M. Kim, “An empirical investigation into the impact of refactoring on regression testing,” in 2012
International conference on software maintenance, IEEE, 2012, pp. 357–366.

V. R. Basili, “Software modeling and measurement: the goal/question/metric paradigm,” Institute for Advanced
Computer Studies, University of Maryland, Tech. Rep., 1992.

M. Goss-Sampson, “Statistical analysis in jasp: A guide for students,” 2020.

